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Representational capacity of a set of independent neurons
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The capacity with which a system of independent neuron-like units represents a given set of stimuli is
studied by calculating the mutual information between the stimuli and the neural responses. Both discrete
noiseless and continuous noisy neurons are analyzed. In both cases, the information grows monotonically with
the number of neurons considered. Under the assumption that neurons are independent, the mutual information
rises linearly from zero, and approaches exponentially its maximum value. We find the dependence of the
initial slope on the number of stimuli and on the sparseness of the representation.
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[. INTRODUCTION information is less than the entropy of the stimuli. In the
extreme case where the responses are independent of the
Neural systems have the capacity, among others, to regtimulus shown]=0.

resent stimuli, objects and events in the outside world. Here, In Fig. 1 we show the mutual information extracted from
we use the wordepresentationto refer to an association neural responses from the inferior temporal cortex of a
between a certain pattern of neural activity and some extermacaque when exposed povisual stimuli [8]. Diamonds
nal correlate. Irrespective of the identity or the properties ofcorrespond top=20, squares tgp=9 and triangles top
the items to be represented, information theory provides a&4. The graph is plotted as a function of the number of
framework where the capacity of a specific coding schemaeurons considered. Initially, the information rises linearly.
can be quantified. How much information can be extractedAs N grows, the increase df(N) slows down, apparently
from the activity of a population of neurons about the iden-saturating at some asymptotic value compatible with the the-
tity of the item that is being represented at any one moment8retical maximum logp.
Such a problem, in fact, has already been studied experimen- The behavior shown in Fig. 1 is quite a common obser-
tally [1-11]. Typically a discrete set gf stimuli is presented vation also in other experiments of the same ty{&,10,11.
to a subject, while the activity of a population Nfneurons  From the theoretical point of view, different conclusions
is recorded. At its simplest, this activity can be described as

an N dimensional vector, whose components are the firing : : : : : : :
rates of individual neurons computed over a predefined time 4+ .
window. The measured response is expected to be selective,
at least to some degree, to each one of the stimuli. This 35 - .
degree of selectivity can be quantified by the mutual infor-
mation between the set of stimuli and the respoh&g$ L
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Cells in the population
The mut.ual i.nformatiori characterizes the mapping between FIG. 1. Mutual information extracted from the activity of infe-
the p stimuli and the response space, and represents the, temporal cortical neurons of a macaque when exposed to
amount of information conveyed byabout which of thed \isyal stimuli. Diamonds correspond o= 20, squares tp=9 and
stimuli was shown. If each stimulus evokes a unique set Ofiangles top=4. The graph is plotted as a function of the number
responses, i.e., no two different stimuli induce the same regf neurons considered, once an average upon all the possible per-
sponse, then Ed1) reduces to the entropy of the stimulus mutations of neurons has been carried out. The theoretical maxi-
set, and is, therefore, lg@. On the other hand, if a response mum is, in each case, lpg=4.32 bits, 3.16 bits, and 2 bits, respec-
r may be evoked by more than one stimulus, the mutualively. The full line shows a fit of Eq(3) to the case op=20.
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have been drawn, over the years, from these curves. Obvi-
ously, the saturation in itself implies that, after a while, add- P(s)= 3 (4)
ing more and more neurons provides no more than redundant
information. Gawne and Richmor{d3] have considered a | order to calculate the mutual information betwegmand

simple model which yields an analytical expressionlidd) 7 we assume that each stimulus has a representati&n iin
under the assumption that each neuron provides a fixegiher words, for each stimulus there is a fixed

amount of information| (1), andthat a fixed fraction of such N-dimensional vectors. Superscripts label stimuli, while
an amounty, is redundant with the information conveyed by sypscripts stand for units.

any other neuron. The model yield¢=)=I(1)/y. Rolls  The fact that the neurons are noiseless means that the
et al.[8] have considered a more constrained model that, ifhapping between stimuli and responses is deterministic.

addition, assumes that=1(1)/log p. Later it was shown That is to say, for every stimulus there is a unique response
that this is, in fact, the mean pairwise redundancy if thers \Mathematically,

information provided by different cells has a random overlap

[14]. In this kind of phenomenological description, the infor- 1 if r=rs

mation provided by a population &f cells reads P(r[s)= 0 if rers (5

Therefore, for everyse S there is one and only ones R.

The reciprocal, however, is in general not true. If several

stimuli happen to have the same representation—which may

The full line in Fig. 1 shows a fit of Eq3) to the data, in the vv_eII be the case if too few units are con5|dered—t_hen a

case ofp=20. givenr may come as a response to more than one stimulus.
It has also been suggestE&] that monitoring the linear In_ ord_er to prow_de a detailed description of th_e way the

rise for smallN may tell whether the representation of the Stimuli are associated to the responses, we dejnas the

stimuli is distributed or local. In a distributed scheme manynumber of stimuli whose representation is stat€learly,

neurons participate in coding for each stimulus. On the con-

trary, in a local rgpresentation—somgtimes called grand- 2 S=p, (6)

mother cell encoding—each stimulus is represented by the r

activation of just one or a very small number of equivalentand

I(N)=logy(p)[1—(1—y)"]. ©)

neurons.

Here we present a theoretical analysis of the dependence s
of 1 on N for independent units. In contrast to the previous P(r)=—. (7)
phenomenological description, we model the response of p

each neuron to every stimulus. In Secs. Il and Il we deriv . . _ .
I (N) for several choices of the single unit response probabi?%ﬁlgesnu:]:]eor?)tﬂi't'rzgal probabllltySb) IS msg;ted Ln Eq(l), |

ity. In Sec. IV we discuss the relation of the mutual infor- . s PONSES can be carried out, since only a
mation defined in Eq(1) to an informational measure of smgle vectorr =r® gives a contribution. The mutual infor-
retrieval accuracy. We end in Sec. V with some concludingmatlon reads

remarks.
1= iIogz( p).

p

S,

Thus, | is entirely determined by the way the stimuli are
In what follows, the issue of quantifying the mean amountclustered in the response space. For example:

of information provided byN units is addressed. To do so, * Consider the case where all stimuli evoke the same re-

the response of each unit to every stimulus is specified. Fromponse. This means that all thé coincide. Accordingly,

such responses, the mutual information is calculated usin§,s=p while all the otherS;~ vanish. There is no way the

Eq. (1). Two types of models are considered. In this sectiorresponses can give information about the identity of the pat-

we deal with discrete noiseless units, while in Sec. Il weterns, and =0.

turn to continuous noisy ones. « If every stimulus evokes its distinctive response there
We considemN units responding to a set of stimuli. The are no two equal®. This means that a numbpiof the S, are

responsea; of uniti is taken to vary in a discrete set 6f equal to one, while the remaining vanish. The responses fully

possible values. The states of the whole assembly vfits  characterize the stimuli, arid=log, p.

®

Il. DISCRETE, NOISELESS UNITS

are written ag e R, wherer=(r, ... ry). Throughout the « Consider the case of even clustering, where the repre-
paper, letters in bold stand for vectors in Brdimensional  sentations are evenly distributed among all the states of the
space. The total number of statesRnis thereforef™. system. This, or something close to it, may in fact happen

The stimuli{s} to be discriminated constitute a discrete setwhen the number of patterns is much larger than the number
S of p elements. For simplicity, we assume that they are albf statesp>fN. Thus,S,=p/fN, for all r, and | =log,(fV).
presented to the neural system with the same frequencyhis is the maximum amount of information that can be
namely extracted when the set of stimuli has been partitionetNin
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subsets, and the responses are only capable of identifying th log, 64

subsets, but not individual stimuli. h=
. log, 32 : : 1%
A. A local coding scheme Ky .s 30
We now consider another example, namely that of a locals  log, 16|® ¢ 64 A A
coding scheme, sometimes called a systengrahdmother g e
cells In 1972 Barlow proposed a single neuron doctrine for 5 log, 8} . =
perceptual psychologyi5]. If a system is organized in order £ e e I
to achieve as complete a representation as possible with thc‘g log, 4} — A . " "
minimum number of active neurons, at progressively highers 2 S S o *
levels of sensory processing fewer and fewer cells should be& s A " e ® * *
active. However the firing of each one of these high level log, 2t 4 A e et
units should code for a very complex stimul(es for ex- i H =
ample, one’s grandmotherThe encoding of information of ) : 7 8 - . 16

such a scheme is described as local.

Local coding schemes have been shown to have several
drawbackd 11], as their extreme fragility to the damage of  FIG. 2. Mutual informationl as a function of the number of
the participating units. Nevertheless, there are some exells N, for different sizes of the set of stimuli, in the case of
amples in the brain of rather local strategies such as, folocalized encoding. For small, the information rises linearly with
example, retinal ganglion cell®nly activated by spots of a slope proportional to p/ WhenN=p—1, | saturates at logp.
light in a particular position of the visual field6]) or the
rodent’s hippocampal place cellenly responding when the  cific stimulus. When two cells are considered, a part of this
animal is in a specific location in its environmenf]). non-specific information overlaps with the information con-

Wg nc;}w evl?luakt}e the mkqtual info][mation in SUCh yeved by the second cell, when responding. In other words,
grandmother-cell scheme, making use of E). For sim- two cells respond to different stimuli then, when one of

plicity, we take the units to be binaryf £2). We assume them is in state 1, the other is, for sure, in state 0. Therefore,

that each unit responds to a single stimuls§j). Let us take : : . ; . . i
that response to be 1, and the response to any other L~:timulﬁts”CtIy speaking, the information provided by different neu

. g ) rons in a grandmother-like encoding is not independent.
to be 0. AII units are taken to respond to one smgle Stlmglu%owever in the limit ofN/p—0 the number of stimuli not
Egd’Tfuzrs;[éxiéatﬁ:Lg;g;gne responsive unit per Stlmuévoking responses in any single cell is large enough as to

L . =P . rpake the information approximately additive.

This particular choice for the representations means tha As N approachesp, such an independence no longer
out of the X states of the response space, only a subset cﬁolds so the growth 6!f(N) decelerates, and the curve ap-
N+ 1 vectors is ever used. Actuallgy=p— N, while for all f '

. . - . proaches logp. ForN=p—1, the mutual information is ex-
one-active-unit states; Se=1. For the remaining responses, actly equal to logp, and remains constant when more units
S,=0. Therefore, the mutual information reads y &g ap.

are added. In factp—1 noiseless units are enough to accu-
p rately identifyp stimuli. If all p— 1 are silent, then the stimu-
—N)' 9 lus shown is the one represented by the missing unit.

P In a slightly more sophisticated approach, each unit can

In Fig. 2 we show the dependence lobn the number of Nave any number of responsesBut as long as the condi-
cells, for several values gf. It can be readily seen that for tional probabilityP(r;|s) is the same for all thosethat are

Number of neurons N

I NI ( )+p_NI
=—lo —lo
D g2(p D 7]

N<p nots(j), Eq. (9) still holds. _
It should be kept in mind that up to now we have consid-
N 1+Inp ) ered the optimal situation, in that different units always re-
~ 5 in2 +O(N/p)*©. (100 spond to different stimuli. If several cells respond to the

1 p—1
I(N)=NI(1)=N Blog2 p+ T|ng

11

same stimulus, a probabilistic approach is needed since oth-
In the limit of largep Eq. (10) coincides with the intuitive ~€rwise, the growth of(N) depends on the order in which the
approximation units are taken. Averaging over all possible selectionsl of
cells from a pool oM units (the whole set is such that there
p areM/p cells allocated to each stimuluthe result shown in
p—1/| Fig. 3 is obtained. We have takep=32, and different
curves correspond to various valueshdf The probabilistic
A linear rise inl (N) means that different neurons provide approach smooths the sharp behavior observed in Fig. 2.
different information, or, in other words, that there is noActually, the asymptote lggp can only be reached when
redundancy in the responses of the different cells. As seen ithere is certainty that there am—1 units responding to
Fig. 2, this is, in fact, the case whéhis small andp is large  different stimuli, that is, foN=1+ (p—2)M/p. However, it
enough. When a cell does not respond, it is still providingis readily seen that wittM/p as large as 5, the curves are
some information, namely, that it is not recognizing its spe-already very near to the limit case bf/p—o°.
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If in one particular experiment the set of stimuli is large
enough to effectively sample,(r°) the averaged informa-
tion will be close to the experimental result.

We further assume that there is a probability distribution
p(r;) that determines the frequency at which yrgioes into
stater; (or fires at rater;). If p is strongly peaked at a
particular state—which can always be taken as zero—the
code is said to be sparse. On the contrary, agflgives rise
to a fully distributed coding scheme.

Finally, we assume that different units are independent. In
other words, we factorize the probability that a given stimu-
lus is represented by the statas

N
16 Pl(r)=11:[1 p(r)). (14

Number of neurons N

FIG. 3. Mutual informationl as a function of the number of In order to average the informatidB) we need to derive
recorded unitd\, once averaged over all the possible selectior’$ of the probability that stimuli are clustered into any possible set
cells picked up from a pool d¥ (the latter constituted d¥1/p units  of {S}. Such a probability reads
responding to each stimuludifferent curves correspond to vari-
ous values oM, andp=32. p
P({S})=({S})Hr[P1(r)]Sf, (15

B. Distributed coding schemes

As an alternative to the local coding scheme describedvhere
above, we now treat the case of distributed encoding, ranging
from sparsely to fully distributed. However, in doing so, we p _ p!
employ a different approach, namely, we average the infor- {sy) 1LS!°
mation upon the details of the representation.

Equation(8) implies that the amount of information that Therefore, the average mutual information may be written as
can be extracted from the responses depends on the specific
representations of the stimuli. Since it is desirable to have
a somewhat more general result, we define an averaged mu-
tual information(l ):

(16)

<I>={ES} P{SHI. 17

The summation runs over all sefS} such that=,S,=p.
Replacing Eq(8) in Eqg. (17), we obtain

(Y= > Po(rh, ... 1P, (12)
i P
S [
% ( )H [Py(N]>X —Hogy| —|. (18
where the mean is taken over a probability distribution = {st)" ! P 2 S
Po(r, ... rP) of having the representation in positions
(%, ... rP. This distribution, of course, is determined by the Rearranging the summation so as to explicitly separate out a

codlng scheme used by the system. By averaging the mfonfimgIes one may write
mation we depart from the experimental situation, where the
recorded responses strongly depend on the very specific set S p 1
of stimuli chosen. But, in return, the resulting information ~ {1)= 2 2 SN |092<§>(p_—s)!A
characterizes, more generally, the way neurons encode a cer- ' (19)
tain type of stimuli, rather than the exact stimuli that have
actually been employed.

We write Py as a product of single distributions for each

whereA is the sum over all othe®, namely

representation,
P A= S ( ) TT [P 18" =[1-Py(r)]PS.
1S %1} {S'q“} £y
i (20)
Po(r®, .7y =]] Py(re). (13
s=1 Thus,

This implies that the representation of one item does not bias (p—1)! p
the probability distribution of the representation of any other. (= 2 Z 1 (S—D'[(p—1)—(S—1)]! '092 §
In this sense, we can say that EG3) assumes that repre-
sentations are independent from one another. X[P1(r)]3[1—Py(r)]P~ . (21
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FIG. 4. Mean mutual informatiofl)ys as a function of the
number of neurondl for several values op. Initially the informa-
tion rises linearly with a slope only slightly depending pnAs N
increases(l )y eventually saturates at lgp.

We now discuss two particular cases of E2fl). First, we
take the encoding to be fully distributed, nametyr;)
=1/f. Therefore,Py(r;) = 1/fN. If this is replaced in the
previous expression, we obtain

p—2

—1)!
(I gis=(1—fN)P~ 12 S'((;)—15)
N_1\—S P
X (f"=1)">log, sr1/- (22
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As opposed to the fully distributed case, a sparse distrib-
uted encoding is now considered, witfi=2, p(1)
=g, p(0)=1—q andq<1. This choice is again a binary
case, but with one response much more probable than the
other. As a consequence, the most likely representatioRs in
space are those with either zero or at most one active neuron.
In fact, P,(rs=0)=(1—q)", whereas if the representation is
a one-active-unit state, P,;(€)=q(1—q)""!. The prob-
ability of all other representations is higher ordergin

Accordingly, to first order irg, we only consider the com-
binations ofp representations with at leagt-1 of them in
stater®=0. These are the only responses with a probability
Py at most linear ing. More precisely, the probability of
representing allp stimuli with the same state=0 is
Po(0,0, ...,00=[P1(0)]P~1—Npg. In the same way, the
probability of havingN—1 stimuli in 0 and a single one-
active-unit state iy, There areN different possible one-
active-unit states, and any one of ghstimuli can be such a
state. Taking all this into account, we find that up to the first
order inNpaq,

e NpQ P P Y 26
(Dspa=Npq T 0%\ p1 +5092P . (20
Expanding this expression for large we obtain
im (=N 1+Inp )
Im( >_ q |n2 ( 7)

pgmo

This means that from the experimental measurement of the
slope of(I(N)) it is possible to extract the sparseness of an

It may be seen that the dependence of the informatiofi on€quivalent binary model, which can be compared with a di-
andN always involves the combinatiofl'. This means that rect measurement of the sparseness. If the number of stimuli
neither the number of units, nor how many distinctive firingcannot be considered large, the whole of E26) can be
rates each unit has are relevant in themselves. Only the totdfed to derive a value far.

number of states matters.

In Fig. 4 we plot the relation betweefl)ys and N for
several values op. Initially the information rises linearly
with a slope only slightly dependent gn As N increases,

(I gis eventually saturates at lgg. The limit cases are easily

derived:
p
lim (1)gis=N(p— 1)Ian092 ) (23
Ninf—0 -1
lim (1)gs=log, p—(p—21)f N (24
N/p—oo

If the number of stimuli is large, Eq23) becomes

lim lim {1)4s=N——rIog, f. (25

N Inf—0p—o

Notice that in contrast to the local coding scheme @y.the
initial slope of I(N) hardly depends o (actually, it in-

It should be noticed that tj=1/p Eqg. (26) coincides with
the expressior(11) for a grandmother-like encoding. This
makes sense, singg=1/p implies that, on average, any one
unit is activated by a single pattern. In short, it corresponds
to a probabilistic description of the localized encoding. No-
tice, though, thatyj=1/p is outside the range of validity of
our limit Npg<1.

IIl. CONTINUOUS, NOISY NEURONS

In this section we turn to a more realistic description of
the single neuron responses. Specifically, we allow the states
r to take any real value. Therefore, the response spaie
now Ré'. In addition, we depart from the deterministic rela-
tionship between stimuli and responses. This means that
upon presentation of stimuliss there is no longer a unique
response. Instead, the response vect most likely cen-
tered at a particular®, and shows some dispersion to nearby
vectors. The aim is to calculate the mutual information be-
tween the responses and the stimuli requiring as little as pos-

creases slightly witip). This makes the distributed encoding sible from the conditional probabilit(r|s). A single pa-
a highly efficient way to read out information about a largerametero is introduced as a measure of the noise in the

set of stimuli by the activity of just a few units.

representation. Thus,
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Moreover, and pretty much as in the experimental situation

3 ) o
++p=2 l of Fig. 1, the initial slope does not seem to depend strongly
5iE ; ; g on the number of stimuli, at least for large values of the noise
- * * o. In what follows, an analytical study of these numerical
= results is carried out. In particular, the relevant parameters
-(% ’r * ! determining the shape ofN) are identified.
£ I * x x We write the mutual information as
_§ 1.5} x
£ x I=H;—H,, (29
R x
g x N + o * ] where
os % o+ 1P L P
+
Hi=—~ > fdr P(r|s)logy| = >, P(r|s’)l
] ] ] ] ] ] p s=1 p ' =
8 1 2 3 4 5 6 7
(a) Number of neurons N
; - [ arpoyiog i) 30
++p=2
o5 ;; g is the total entropy of the responses, and
R 1
g 2—52 dr P(r|s)log,[ P(r|s)] (31)
g | =
o 1.5 * . ..
€ | * is the conditional entropy oP(r|s), averaged oves.
I * X H, can be easily calculated. It reads
= 1 X
5 ¥ x
= x + T H 1+In(2mo? 32
B = + .
05 ¥ . o+ 7 2= 5l 1t In(27o?) ] (32)
# +
o ] 5 3 7 3 ‘ 7 It is therefore linear irN. This stems from the independence
(b) NUIRBSF 6f FEUTSHS 1 of the units, since the entropy of the response space increases

linearly with its dimension. It does not depend on the loca-
FIG. 5. Results of the numerical evaluation of the mutual infor- ion of the representations, and it is a growing function of
mation for continuous noisy neurons, whegeis the number of the noiseo.

stimuli in the set. InN@ o=\/2, and in(b) o=X\. In Appendix A we solve the integral in of H; using the
replica method. We obtain
N o=(rj—r )2/20'
Pirls =TT ———5—, 8 ;_1"m1( - N+l
= V2 0' 1 In ZnHOn pn+l(2ﬂ_o_2)Nn/2(n+ 1)N/2 3! {K}
where the indexs takes values from 1 tp. The conditional N 1 PP
probability depends on the distance between the actual re-  x[] ex;{ > > KK,
sponser and a fixed vectore R, which is the mean re- =1 40%(n+1) /=1 m=1
sponse of the system to stimulasThere is one such® for
every element ir5. The choice of Gaussian functions is only X(r{=rm2[t—1 (33
to keep the description simple and analytically tractable. By b ’
factorizing P(r|s) in a product of one component probabili-
ties an explicit assumption about the independence of thehere{K} now stands for the sdK; ,K,, ... K} specify-
neurons is being made. ing how many replicas are representing each pattern. The
Figure 5 shows a numerical evaluation of the informationsummation in{K} runs over all sets oK such thatS?_,Kg
(1), when the probabilityP(r|s) is as in Eq(28). The infor-  =n+1. The symbol in brackets is defined in Ef6). Equa-

mation, just as in the previous section, has been averageibn (33) shows that the information depends explicitly on
upon many selections of the representatiohsThe curve is  the ratio between all the possible differendes—r™ and

a function of the number of neurons considedDifferent  the noiseo. In other words, the capacity to determine which
lines correspond to different sizes of the set of stimuli, whilestimulus is being shown is given by a signal-to-noise ratio,
in (8 o=\A/2, and in(b) o=\, where\ is a parameter characterizing the discriminability of the responses.
guantifying the mean discriminability among patterns, to be The mutual informatiorl characterizes the selectivity of
defined precisely later. Just as in the discrete distributed casthe correspondence between stimuli and responses. If the dis-
we observe an initial linear rise and a saturation abfpg tance between any two vectdrs —r™| is much greater than
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the noiseo, then the mapping i&lmos} injective. Thus, in  averaging process, the location of every single response by

this limit the mutual information approaches its maximal every single unit was relevant.

value, log p. The limit in Eq.(38) can be calculated in some particular
If, on the other hand, the noise level R(r|s) is enough cases. In the first place, we analyze the lakgkmit. From

to allow for some vectors to be evoked with appreciable Eq. (39) it is clear that(A})<1. The equality holds, in

probability by more than one stimulus, the mutual informa-fact, only when there is a singl different from zero. In the

tion decreases. In this sensecan be interpreted as a com- calculation ofH,), as stated in E((38), Ajx, appears to the

parison between the noise ®(r|s) and the distance be- N-th power. Therefore, wheM— only the terms with

tween any two mean responses. For a specific choice of th&,=1 give a non-vanishing contribution. There greof

representations, the distance between any two of them is such terms. When the sum (88) is replaced byp, it may be

non-linear function of their components. Therefore, in gen-shown that once moré) )=log, p.

eral, even though Eq28) implies that different units are In the following two subsections we computgN)) for

independent, it is not possible to writeas a sum over units both large and small values of the noise

of single-units information.

Just as before, we now average the mutual informdtipn A. Information in the large noise limit
over a probability distributiorPy(rt, ... rP) of the repre- . "
sentations?, . .. rP, namely We now make the assumpnon that the naisés much
larger than some average width @fr). In other words, we
P suppose o= (r’ —r™?2, for all r’ and r™ with non-
(I)=f H driPy(rt, ... Pl (34  vanishing probability. In this case, the exponential in Eq.
=1 (399 may be expanded in Taylor series. Up to the second
Under the assumption that the responses to different stlmu?rder
are independen®, reads 1 PP
KK (rm—r"
P p[ A(n+1)0? 2y 2 Kk : 1
Pory, ... =1 Py(rd). (35)
) P P
~1- KK A(rM=r")
Adding the requirement of independent units, 4(n+1)0'2 mzzl Zl mkl
N 1 1 PP 2
%)= > +5 KK (r™M—r17)?2
P,(r%) ,Hl p(rd). (36) 2| 2t D02 m; Zl mK )

By replacing the averagé ?) in the separatioi29) we write (40

(1y=(H,)—H 37) If only the constant term is considered, the integral in Eqg.
1 2 (39 becomes the normalization condition fBg. Thus, the
sums in Eq.(38) give p"*1, and it is readily seen thgH )
exactly cancelsH,. As expected, in the limib?>—o the
mutual information vanishes.

sinceH, does not depend on the vectaofs
So we now turn to the calculation ¢H ), namely,

1 1 1 The next order of approximation is to consider the expan-
(Hy)=——lim= sion (40) up to the linear term. Thus, the integral in E§9)
|n2nﬂon (n+1)N/2(27T0.2)Nn/2pn+1 becomes
A2 p p
X A 38 A)y=1- KnK,, (41
{EK} ( {K} ( {K}> ( ) < {K}> 4(n+1)0_2 mz:l /::L‘Z/#m mh/ ( )
where where
p
(A{K}>=J IT drsp(rs) >\2=f drtdr?p(rt)p(r?)(rt=r?y? (42)
s=1

is the parameter quantifying the discriminability among pat-
terns, and appearing in Fig. 5. We have now gained a more
precise insight of the large limit. It stands for takingo
39 >\

Since in Eq(38) Ak, appears to thé&l-th power, in order
The main step forward introduced by the average in(8).  to proceed further we have to estimate the sizé&nf/o?.
is that now,{H,) is symmetric under the exchange of any We first consider the smalll limit and assume, to start with,
two responses, or any two neurons. In contrast, before théhat NA%/o?<1. Thus, we may expand

p p
> 2 KK (rm=r/)2|.

ex
;{ 4(n+1)02m 1/7=1
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N2 P P 224 2 2 (p—2) (2
Agp)N=1—- ——— KnK,. (43 C=——2A|1-—+— |- ——1)
(Aky) Hnt1)o? m§=)1 /=§;#m mK,. (43 0 1( p 2 C—
In Appendix B we calculate the sums in E@.3), thus ob- _2A3w (48
taining (H,). When the result is replaced in E@®8) we get
. N (p—1)/ \ |2 u with
=17 0 |20 (44)

A= [ artar o) pr -,

For a large amount of noise, the information rises linearly
with the number of neurons. This dependence should be :f 1qp24p3 (pl 2 3y rl_ p202/p1_ 3y2
compared with Eq(25), in the discrete distributed case. The Az drodrodr=p(rp(r)p(r(ri=rH=(ri=r)%
two expressions coincide, if the number of discrete sthitges (49
associated to expf/40?). Therefore, as regards to the mu-

tual information, a dispersiow in the representation is :f dridr2drddr® o(rHo(rd) o(rd o(r4)(ri=r2)?
equivalent to having a number exg(do?) of distinguish- 3 P(rp(rp(rp(r( )
able discrete responses. Notice that both the noisy, continu-
ous and the discrete, deterministic approach show the same

dependence on the number of patterns. Our numerical simulations corroborate that if a quadratic
Regarding the dependence onit is readily seen that as  fnction is fit to the initial rise of (N), the coefficients ac-

the noise decreases, the slopd aicreases. In other words, companyingN and N2 depend orp and o just as predicted
every single neuron provides a larger amount of informationby Eq. (47).

Since the mutual information saturates at,lpdor N—o, a

small value ofo implies that the ceiling is quickly reached.

As a consequence, the assumptiro?/\? can now be

more precisely stated d$<(a?/A\?)log, p. In this regime, In the first place, we take— 0. If the conditional prob-

linearity holds. ability (28) is replaced by a-function, it is readily seen that
As N increases, saturation effects become evident, and the= 109, p.

mutual information is no longer linear. The first hint of the  In Appendix C we show that for small—but not

presence of an asymptote at jgmis given by the quadratic vanishing—values of the noise, the mutual information is

contribution tol (N). In order to describe it, the whole of expected to grow as

expansion(40) must be replaced in Eq39). Carrying out

X (r3—r%)?2

B. The limit of vanishing noise

: g p p—1
the integral inr=, ... rP, (I)=|ng(p)[1— I (4\/;JBZ)N , (50)
0g; p
(Are)=1— \? Ep: Ep: K K where
{K} 4 2(n—f— 1) /=1 m=1m=/ /om
v Bzzf p2(r)dr. (51)
— (45)
320°(n+1) In order to corroborate this result, we have fit a function
of the form log(p)[1—aexpON)] to the numerical evalua-
where tion of Eq.(37). In Fig. 6 we show the dependenceadénd
b with o and p. We observe that coefficier shows a de-
p 2p pendence with the noise, in contrast to what is predicted
774:f { > =™K K, p(rs)drs. by Eq. (50). It is also in contrast to the prediction of the
/=1m=1 s=1 phenomenological model leading to E8), wherea=1. In

(46) addition, b shows a variation with the number of stimyli
_ _ o Thus, although it is very easy to calculate the mutual infor-
Extracting the sums from the integral, the limit in E§8)  mation wheno is exactly equal to 0, we have not been able

can be solved, and to derive analytically the approach to the Jaglimit, as o
—0.
m N p—1 >\2+ L N2 )\Z)Zp—l
2 o |22 o222 in2\ 12 5 IV. A RELATED INFORMATIONAL MEASURE
P 140" 2(40%) 4ct] P OF ACCURACY
(47)
Up until now, we have considered the mutual information
Here, of Eq. (1), a quantifier of the capacity with which a given
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15 — set of p stimuli, but only to a probability distributiof®(r®)

: [and, of course, to a conditional probability distribution
P(r|r9)]. This measure of accuracy is simply related to the
mutual information we have considered in this paper: it is
given by itsp— < limit. In particular, the initial linear rise of

T with N is the only regime relevant to the accuracy measure,
S which for independent units is always purely lineaNn

: Let us see this in formulas. Just as before, we assume that
P(r®) factorizes as

I
|
s N

N
o P(ro) =11 P(r)). (53)
i=1
L | L | .
0 0.01 0.02 0.03 0.04 The equivalent of Eq(2) is now
(a) Noise in the representation ¢
0 P(r)=J drsP(rs)P(r|r9). (54)
-1 In Appendix D we show that
2 (L 55
N2 442 (55
= 3F s p=2
—-—— 4 In the derivation of Eq(55) no assumption of smaN has
-4 ’ —_— 8 been made. By comparison with E¢4) we see that, indeed,
. the information measuré?2) introduced in this section co-
-5 incides with the initial rise of the information about which
) stimulus is being showKSec. Ill), when the latter is calcu-
-6 lated for a large number of stimuli.

. L n L . J n
0 0.01 0.02 0.03 0.04
(b) Noise in the representation ¢
V. SUMMARY AND DISCUSSION

FIG. 6. Dependence of the coefficierdsand b extracted from . . . . .
numerical evaluations of the mutual information, with the param- The capacity with Wh'_Ch q system deependent units
etersp and . can code for a set gb stimuli has been studied. More pre-

cisely, the growth of the mutual informatioh between

group of units can represent a fixed sepaftimuli. This is a stimuli and responses has been calculated, for different mod-
measure of direct relevance to neuronal recording experf€!S of the neural responses. In all these models, the units
ments. A somewhat different information measure has bee€re supposed to operate independently. That is to say, the
used in analyzing mathematical network models, in particu¢onditional probability of responsegiven stimuluss is al-
lar models of memory storage and retrieval. We would likeWays & product of single-unit condltlc_)nal probabilities. Of
to clarify the relationship between the two measures. course, the fact that neurons operate independently does not

Consider the variability with which a typical stimulus is mean that they prowdg mdepgndent information. As stated in
represented, which in a mathematical model might be deEd- (29), the mutual information can always be separated
scribed by a formula as simple as E@8). There,r is the into the difference between the entropy of the responses
response during a trial, while® is the average response (H1) and the averaged stimulus specific entroby), some-
across trials with the same stimulus. The average variabilitfimes called noise entropy. For independent uritg,is al-

may be quantified by the mutual information betweeand ~ Ways linear inN. However, the factorization of the condi-
rs tional probabilities does not imply the factorization fr),

meaning thaH ; need not be linear in the number of units. In
(52) other words, even independent units may produce correlated

responses, and indeed strongly correlated, simply because

every unit is driven by the same set of stimuli. Imagine that
wherer?® is taken to span the space of average responsesach unit provides a very precise representation of the
described by the probability distributid®(r®). In a different  stimuli. If stimulus 1 is shown, the responses of Mainits
model, r* might be the first response produced, anthe  will show almost no trial to trial variability. When the stimu-
second, or any successive response; in yet other mptiels  lus is changed, another set Nfresponses is obtained. But
22], r® might be the stored representation of a memory itemthe first responses always come togetlugiven by stimulus
andr the representation emerging when the item is beindl), and so do the second ones. Even after averaging over all
retrieved. In all such cases, one need not refer to a discrestimuli, this coherent behavior implies strong correlations

P(r|r®)

P(r)

~I=f drSP(rS)f drP(r|r%log,

011910-9



INES SAMENGO AND ALESSANDRO TREVES PHYSICAL REVIEW B3 011910

between the responses. In this exampte,~0 and H; sponses themselves, that the representation of faces in the
~log, p. inferior temporal cortex of the macaque is distributed.

In other situations, when the number of stimuli is very
large, or the representation of each one of them is noisier, the ACKNOWLEDGMENTS
correlations in the responses are weaker. We have seen that,\ye thank Damian Zanette for a critical reading of the

in these casedi; tends to become linear iN. manuscript. This work has been supported by Human Fron-
Throughout the work, the responses of the units was detier Science Programm, Grant No. RG 01101998B.
scribed by a vectar. Nothing was said, however, about what

the components of the vector really are. In the experiment of AppPENDIX A: CALCULATION OF H, USING THE

Fig. 1,r; was the firing rate of neurgnin a pre-defined time REPLICA METHOD

window. One might however consider a slightly more com- ] ] )

plex description in which a subset bf components is asso- ~ Réplacing the identity

ciated to the response of unit for example, the firsiv 1

principal components of its time courg&]. Our analysis Ina=Ilim=(a"—1) (A1)
would still apply, replacingN units by MN components. n—ol

In the Introduction, reference was made to the phenom
enological models where the growthIdiN) as given by Eq.
(3) is entirely explained by ceiling effects. In such models,
the information provided by different neurons is supposed to
be independent, inasmuch this is compatible with the facH1=— fdr P(r|s)—I|m [

in Eqg. (30) the integral inr can be evaluated. This we show
in the present appendix.

p n
E= % (r|s’ )] —1}

that the total amount of information must be jgg The 2o
models presented in this paper are not in principle opposed
. _ -1 1 Hy,
to the phenomenological ones; rather they are at a more de- — __— i, = _ (A2)
tailed level of description. Instead of a direct assumption on N2, on | pn+t

how different units share the available information, we
specify conditional probabilities for the responses. As a rewhere

sult, we find global trends that closely resemble those of Eq. p
3, tha_t is to say, an |n|t|al_ linear rise and an exponential Hp= >, J' dr P(r|s)
saturation at logp. The detailed shape ¢{N) is, however, s=1
different for each model. p nop p N
It should be kept in mind that whatever the detailed shape % 2 P(T|S’)] E . E H Hyp(j)
1

of the curve, the approach to lpg is no more than a con-
sequence of the fact that the number of stimuli is limited.
The maximum information that can be extracted from the
neural responses is lgpg. It is clear that if we have a set of gnd
neurons that already provides information very near to this

maximum, by adding one more neuron we will gain no more 1 ntl Sk 5
than redundant information. In other words, we have reached10(})= (2ma?) 12 drj ex E (rj—r"
a regime where the neural responses correctly distinguish the (A%)

identity of each stimulus. But we cannot deduce from this

that the representational capacity of the responses remaiis a factor that depends on thieth component of one par-

unchanged when the number of neurons increases. Onigular way of distributingp stimuli among then+ 1 replicas.

should rather realize that the task itself is no longer approTo calculate it we observe that

priate to test the way additional neurons contribute in the Nl 2

encoding of stimuli. In contrast, the slope of the initial linear s, ZtAZ

rise is an accurate quantification of the capacity of the system kg (rj= =(n+1) n+1 f 2 SN §AE

to represent items. (A5)
We have found that distributed coding schemes result in

an initial slope that is roughly independent of the number ofwheregl is a vector ofn+1 components such th@f—r

stimuli. This means that the number of units needed to reacifthe vector notation is used for arrays o 1 Components

a given fraction of the maximum information scales asThe matrixA has dimensionsn(+1)x (n+1), and reads

log, p—at least, for larg@. In contrast, when a grandmother-

cell encoding is used, the initial slope is proportional tp,1/ 1

and hence, one should hatexp. This makes distributed A=lg= 77U, (AB)

encoding much more efficient than localized schemes. In the

example of the experiment of Fig. 1, the information mea-whereU is an (n+1)X(n+1) matrix, with all its coeffi-

sure supports the conclusion, already evident from the recients equal to unity.

rj—
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Thus, the quadratic factor in EGA5) can be extracted
outside the integral in EqA4), and

Hup(j) = (2ma?) (142

n+1 252
(A7)
Replacing this expression in EGA3)
1a=[Vn+12me?)"? N
P P N
x>, 2 exp = 2 {Ag]. (A8
s =1 Spi1=1 20° =1

We now re-arrange the summation in E48), according
to the numbed of different stimuli appearing in then+1
replicas. For each realization sf,s,, . .. ,S,.1, the replicas

can be divided ird classes, such that aII the replicas belong- R
ing to the same class are associated to the same stimulus, an
replicas of different classes correspond to different stimuli.

The number of replicas adscribed to stimulpss Kj;.
Clearly, the sum of all th&; is n+1, and onlyd of the K;
are different from zero. Therefore,

PP P n+1
>33 =30 e
sc1s-1 s-1 WL A{K]
where the term in brackets is defined in E6), and the
(n+1)-fold summation involves all

Ki, ...
n+1.

The advantage of this rearrangement is that the exponent
in Eqg. (A8) can be written as a function of only the differ-

ences between representations, namely

p p
2(n+1 §=‘, 21 KK A(r"=17)2. (A10)

Therefore, replacing EqgA9) and (A10) in Eq. (A3) we
arrive at Eq.(33).

APPENDIX B: INITIAL RISE OF (I(N)) IN THE LARGE
NOISE LIMIT

Replacing Eqs(40) in (38), we get

1 1
H)=——lim—
(Hy) Inznﬂon[(n+1)M/2(27T0_2)Nn/2pn+1
’N
X pn+l _1 ’ (Bl)
4n+1)o
with
n+1\ P P
S=2 > D KeK, (B2)
K \A{K} /=1 /=17 %m

possible sets of
Kp ranging from 0 ton+1, and whose total sum is

PHYSICAL REVIEW E3 011910

In order to computes we interchange the order of summa-
tion

n+1

p
KK, . B3
1/= 12/¢m{+<} {K} | "™ (B3)

The terms withK , or K,,, equal to zero do not contribute to
S. Therefore, we can restrict the sum in EB3) to K,,#0
#K . Thus, the addition over aK’s ranging from O ton
+1 whose total sum im+1 can be replaced by another
addition, where alK’s different fromK , andK,, range from
Oton—1, K,,andK, go from 1 ton, and the sum of all the
K’s is n+1. Since there ar@(p—1) choices forK, and
Km,

S=p(p—1)(n+1)np"* (B4)
Splacing Eq(B4) in Eqg. (B1) we get
NI o2 p—1/ N |2
(H)=g| 3 + 320 T2 p |20
(B5)
WhenH, is summed tqH,), Eq. (44) is obtained.
APPENDIX C: THE SMALL o LIMIT
We go back to Eq(38). We re-write Eq.(39) as
p l o o
A zf drép(rS)exg — ——x"Myx|,
(Anh) 51:[1 p(r") [{ 2(n—|—1)02X X
(CY
Where;is a vector ofp components, such that,=r%, and
Ky 0 ... O
K, ... O
M=(n+1)
0 0 ... K,
KoKy KK, KaKop
B KoKy KoKy oo KoK, ' 2
KoK1  KpK; KpKp

The integrand in Eq(C1) is 1 in the origin, and also along
the eigenvectors oM corresponding to a zero eigenvalue.
The number of such eigenvalues is equal or larger than the
number ofK that are zero. We therefore re-arrange the num-
bering of the patterns in such a way as to put all those with
K different from zero in the firstd places. ThusKy,1
=Kgs2="--=K,=0. With this ordering, matriM is filled

with zeros in all those positions with a row or a column
greater thard. Integrating inr®*,r9%2, ... rP we get
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d
1 — _
<A{K}>:f51:[1 drSp(rS)ex;{—— MY

2(n+ 1)02X o0
(C3) (C9
wherey’ andM’ are defined ag andM, but live in a space |t may be shown that
of d dimensiongand notp). d d
_ In order to integrate Eq(C3) we o_bser_ve thaM’ has a H =d(n+1)4- 21‘[ K, . (C10
single eigenvalue ; equal to zero, with eigenvector =
1 Thus,
1 1 (n+ 1)1/2
leﬁ (C4) (!_ILnO<A{K}>: (2770'2)(d_1)/2 q Bdl (Cll)
1 VIl k.
/=1
We callw,, ... wy all the other eigenvectors corresponding
to non-vanishmg eigenvalues,, ... \q. We choose the Where
eigenvectors normalized, and orthogonal to each other and to
w; (the symmetry oM allows us to do sp With this set of By= f dx] p(x)]°. (C12
vectors we construct a new basis, and wathe collection of
coordinates in this new system. We define a mafrias the We now turn to the calculation of
change of basis
x=Cw, (C5) S= Z ( (K} )(A{K}> (C13
where where, as before, the summation runs over all sef&pthat
add up ton+1. Equation(C1)) states tha{A,) depends
INd e ... cig ond, that is, on the number df that are different from zero.
1Jd €y ... Cog Therefore, we write the sum in E(C13) as
c- ©8)
_ 2(d-1)/2 [y 1
l/\/a Caz o Cad E dl (p d)l [(277 ) n+1B ] Sl,
(C14
and detC)=1. In this new basis,
where
d
A =J dw;p(Wy /\d+CijoWot - - - +CjgW n+1 1 N/2
< {K}> Jl;[l JP( 1 \/_ j2W2 id ) S,= E (C15
i\ {K}
d H K;
X ex . C
% Z 2(n+ 1) / €

Multiplying and dividing by the product of all 2(n
+1)a?/\ ., for /e[2d], we get

/27702(n+ 1)

'+deWd)]
1 9

% 52 n+1)

ﬁ /2770' n+1)

In the limit c—0, the integrand in Eq(C8) includesd—1
delta functions. Once integrated,

f H [dwjp(w, /d

(A=

+C1'2W2+ .-

(C8)

PHYSICAL REVIEW B3 011910

[2ma?(n+1
lim (Acy) = H %} dWl[p(Wll\/a)]d-

The sum inS; involves only thed values ofK that are
different from zero. We now make the approximation

d Nd/2 n+1
S~ m) PARDS! (C16
But
n+1) d
_ _i\n+1
2w |72 Y @@
(C17

And, taking the limit

a0 .

3 i(— -]

n"To{ZK}f({K}) Paxt N2ty D
(C18
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Moreover, if N is large, asd grows B4)N—0. Therefore, ntl o - (t-x)%20°
keeping justd=1 andd=2 we may approximate —————=27g?) ("D
=1 2mwa?
S~p+p(p—1)In2(27a?)N?(n+1)V2(B,)Nn. 1 o
(C19 X ex —(n+1) 1 2 N
2052 n+1 !
Replacing in Eqs(38) and(29) we arrive at Eq(50).
1 n+1 1 n+1 2
_ 2_ = .
APPENDIX D: INFORMATION BETWEEN THE ACTUAL 242 jzo X; n+1 kzl XJ) H

RESPONSE AND THE STORED REPRESENTATION

The aim is to calculate Eq52) under the assumption V'When replacing this expression in E@5), the integration

i 2
28). Replacing Eq(28) in Eq. (54) the probabilityP(r) can " t can be done right away. The result [2mo/(n
E)e )writtepn asg AES I Eq. (54 the p P +1)]"2 Therefore,

| Hi=— lim = (2mo?)~ "2 (n+1)" 12
P =11 «rp, (D1) 1= iz, Mn
&
where n+1
f IT dxP(x,)
e (rj=1)%20?
g(r-)zf droP(rd)———. (D2)
J J J W ] n+1 , 1 n+1 2
xXex —zzxj—m Zxk —-1].
Just as before, we separate 2071 =1 k=1
T=H;—H,, (D3) (D6)
where In the same way as in EGA10), we write
n+1 1 n+1 2 n+1 n+1
2 —_— — .
H2=—f drof dr P(r|rO)P(r%log,[ P(r|r9] Zl X hT1 12'1 XJ) “2(n+1) /21 mE_ (X, =Xm)?.
(D7)
1+In(2
~21n 2[ (2ma®)], Thus, replacing EqD7) in Eq. (D6), and making the expan-
sion
——f drOJ dr P(r[r®P(r%log,[ P(r)] 1 N+l n+l
_— —X
 40%(n+1) 2, &, (xemx)
—Nf dtZ(t)log,[ £(1)]. (D4)
n+1l n+1
1 2
Inserting the definition(D2) of {(t), and using the expres- ~1- 402Nt 1) /2_:1 mE_l (X,=Xm)%, (D)
sion (A1) for the logarithm we get o T
11 o (toxp 202 H, can be calculated. The result is
Hi= I|m dtH )
On ’770'2 N 2 A
Zn-. H,= inz 1+In(2mo )]+— (D9)
f e~ (x—1)?/20? 40?
- dXP(X)fdt—. (D5)
V2ma? WhenH, is substracted, E(q55) is obtained. It should be

noticed that Eq(D8) is not an approximation. Thieth order
The last term in Eq(D5) is nothing but the integral of(x) in the Taylor expansion of the exponential grows[agn
over all x, which can be shown to give 1. To carry out the +1)]'. Therefore, only the linear term gives a contribution
integral int in the first line of Eq.(D5) we observe that for n—0.
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