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Representational capacity of a set of independent neurons
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The capacity with which a system of independent neuron-like units represents a given set of stimuli is
studied by calculating the mutual information between the stimuli and the neural responses. Both discrete
noiseless and continuous noisy neurons are analyzed. In both cases, the information grows monotonically with
the number of neurons considered. Under the assumption that neurons are independent, the mutual information
rises linearly from zero, and approaches exponentially its maximum value. We find the dependence of the
initial slope on the number of stimuli and on the sparseness of the representation.

DOI: 10.1103/PhysRevE.63.011910 PACS number~s!: 87.19.La, 87.18.Sn, 87.19.Bb
re
er

te
o

s
m
te
n
n
e

a
g
im
ti
h

or

en
t

t o
r
s
e
u

e
f the

m
a

of
ly.

he-

er-

s

-
o

er
per-
axi-
c-
I. INTRODUCTION

Neural systems have the capacity, among others, to
resent stimuli, objects and events in the outside world. H
we use the wordrepresentationto refer to an association
between a certain pattern of neural activity and some ex
nal correlate. Irrespective of the identity or the properties
the items to be represented, information theory provide
framework where the capacity of a specific coding sche
can be quantified. How much information can be extrac
from the activity of a population of neurons about the ide
tity of the item that is being represented at any one mome
Such a problem, in fact, has already been studied experim
tally @1–11#. Typically a discrete set ofp stimuli is presented
to a subject, while the activity of a population ofN neurons
is recorded. At its simplest, this activity can be described
an N dimensional vectorr , whose components are the firin
rates of individual neurons computed over a predefined t
window. The measured response is expected to be selec
at least to some degree, to each one of the stimuli. T
degree of selectivity can be quantified by the mutual inf
mation between the set of stimuli and the responses@12#

I 5(
s51

p

P~s!(
r

P~r us!log2FP~r us!

P~r ! G , ~1!

whereP(s) is the probability of showing stimuluss, P(r us)
is the conditional probability of observing responser when
the stimuluss is presented and

P~r !5(
s51

p

P~s!P~r us!. ~2!

The mutual informationI characterizes the mapping betwe
the p stimuli and the response space, and represents
amount of information conveyed byr about which of thep
stimuli was shown. If each stimulus evokes a unique se
responses, i.e., no two different stimuli induce the same
sponse, then Eq.~1! reduces to the entropy of the stimulu
set, and is, therefore, log2 p. On the other hand, if a respons
r may be evoked by more than one stimulus, the mut
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information is less than the entropy of the stimuli. In th
extreme case where the responses are independent o
stimulus shown,I 50.

In Fig. 1 we show the mutual information extracted fro
neural responses from the inferior temporal cortex of
macaque when exposed top visual stimuli @8#. Diamonds
correspond top520, squares top59 and triangles top
54. The graph is plotted as a function of the number
neurons considered. Initially, the information rises linear
As N grows, the increase ofI (N) slows down, apparently
saturating at some asymptotic value compatible with the t
oretical maximum log2 p.

The behavior shown in Fig. 1 is quite a common obs
vation also in other experiments of the same type@6,7,10,11#.
From the theoretical point of view, different conclusion

FIG. 1. Mutual information extracted from the activity of infe
rior temporal cortical neurons of a macaque when exposed tp
visual stimuli. Diamonds correspond top520, squares top59 and
triangles top54. The graph is plotted as a function of the numb
of neurons considered, once an average upon all the possible
mutations of neurons has been carried out. The theoretical m
mum is, in each case, log2 p54.32 bits, 3.16 bits, and 2 bits, respe
tively. The full line shows a fit of Eq.~3! to the case ofp520.
©2000 The American Physical Society10-1
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have been drawn, over the years, from these curves. O
ously, the saturation in itself implies that, after a while, ad
ing more and more neurons provides no more than redun
information. Gawne and Richmond@13# have considered a
simple model which yields an analytical expression forI (N)
under the assumption that each neuron provides a fi
amount of information,I (1), andthat a fixed fraction of such
an amount,y, is redundant with the information conveyed b
any other neuron. The model yieldsI (`)5I (1)/y. Rolls
et al. @8# have considered a more constrained model that
addition, assumes thaty5I (1)/log2 p. Later it was shown
that this is, in fact, the mean pairwise redundancy if
information provided by different cells has a random over
@14#. In this kind of phenomenological description, the info
mation provided by a population ofN cells reads

I ~N!5 log2~p!@12~12y!N#. ~3!

The full line in Fig. 1 shows a fit of Eq.~3! to the data, in the
case ofp520.

It has also been suggested@8# that monitoring the linear
rise for smallN may tell whether the representation of th
stimuli is distributed or local. In a distributed scheme ma
neurons participate in coding for each stimulus. On the c
trary, in a local representation—sometimes called gra
mother cell encoding—each stimulus is represented by
activation of just one or a very small number of equivale
neurons.

Here we present a theoretical analysis of the depende
of I on N for independent units. In contrast to the previo
phenomenological description, we model the response
each neuron to every stimulus. In Secs. II and III we der
I (N) for several choices of the single unit response proba
ity. In Sec. IV we discuss the relation of the mutual info
mation defined in Eq.~1! to an informational measure o
retrieval accuracy. We end in Sec. V with some conclud
remarks.

II. DISCRETE, NOISELESS UNITS

In what follows, the issue of quantifying the mean amou
of information provided byN units is addressed. To do s
the response of each unit to every stimulus is specified. F
such responses, the mutual information is calculated u
Eq. ~1!. Two types of models are considered. In this sect
we deal with discrete noiseless units, while in Sec. III
turn to continuous noisy ones.

We considerN units responding to a set of stimuli. Th
responser i of unit i is taken to vary in a discrete set off
possible values. The states of the whole assembly ofN units
are written asrPR, wherer5(r 1 , . . . ,r N). Throughout the
paper, letters in bold stand for vectors in anN-dimensional
space. The total number of states inR is thereforef N.

The stimuli$s% to be discriminated constitute a discrete s
S of p elements. For simplicity, we assume that they are
presented to the neural system with the same freque
namely
01191
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P~s!5
1

p
. ~4!

In order to calculate the mutual information betweenS and
R we assume that each stimulus has a representation inR. In
other words, for each stimuluss there is a fixed
N-dimensional vectorr s. Superscripts label stimuli, while
subscripts stand for units.

The fact that the neurons are noiseless means that
mapping between stimuli and responses is determinis
That is to say, for every stimulus there is a unique respo
r s. Mathematically,

P~r us!5H 1 if r5r s,

0 if rÞr s.
~5!

Therefore, for everysPS there is one and only onerPR.
The reciprocal, however, is in general not true. If seve
stimuli happen to have the same representation—which m
well be the case if too few units are considered—then
given r may come as a response to more than one stimu
In order to provide a detailed description of the way t
stimuli are associated to the responses, we defineSr as the
number of stimuli whose representation is stater . Clearly,

(
r

Sr5p, ~6!

and

P~r !5
Sr

p
. ~7!

When the conditional probability~5! is inserted in Eq.~1!,
the sum on the responses can be carried out, since on
single vectorr5r s gives a contribution. The mutual infor
mation reads

I 5(
r

Sr

p
log2S p

Sr
D . ~8!

Thus, I is entirely determined by the way the stimuli a
clustered in the response space. For example:

• Consider the case where all stimuli evoke the same
sponse. This means that all ther s coincide. Accordingly,
Srs5p while all the otherSr l vanish. There is no way the
responses can give information about the identity of the p
terns, andI 50.

• If every stimulus evokes its distinctive response the
are no two equalr s. This means that a numberp of theSr are
equal to one, while the remaining vanish. The responses f
characterize the stimuli, andI 5 log2 p.

• Consider the case of even clustering, where the rep
sentations are evenly distributed among all the states of
system. This, or something close to it, may in fact happ
when the number of patterns is much larger than the num
of statesp@ f N. Thus,Sr5p/ f N, for all r , and I 5 log2(f

N).
This is the maximum amount of information that can
extracted when the set of stimuli has been partitioned inf N
0-2
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REPRESENTATIONAL CAPACITY OF A SET OF . . . PHYSICAL REVIEW E63 011910
subsets, and the responses are only capable of identifyin
subsets, but not individual stimuli.

A. A local coding scheme

We now consider another example, namely that of a lo
coding scheme, sometimes called a system ofgrandmother
cells. In 1972 Barlow proposed a single neuron doctrine
perceptual psychology@15#. If a system is organized in orde
to achieve as complete a representation as possible with
minimum number of active neurons, at progressively hig
levels of sensory processing fewer and fewer cells should
active. However the firing of each one of these high le
units should code for a very complex stimulus~as for ex-
ample, one’s grandmother!. The encoding of information o
such a scheme is described as local.

Local coding schemes have been shown to have sev
drawbacks@11#, as their extreme fragility to the damage
the participating units. Nevertheless, there are some
amples in the brain of rather local strategies such as,
example, retinal ganglion cells~only activated by spots o
light in a particular position of the visual field@16#! or the
rodent’s hippocampal place cells~only responding when the
animal is in a specific location in its environment@17#!.

We now evaluate the mutual information in su
grandmother-cell scheme, making use of Eq.~8!. For sim-
plicity, we take the units to be binary (f 52). We assume
that each unitj responds to a single stimuluss( j ). Let us take
that response to be 1, and the response to any other stim
to be 0. All units are taken to respond to one single stimu
and, at first, we take at most one responsive unit per sti
lus. Thus, for the time being,N<p.

This particular choice for the representations means
out of the 2N states of the response space, only a subse
N11 vectors is ever used. Actually,S05p2N, while for all
one-active-unit statese, Se51. For the remaining response
Sr50. Therefore, the mutual information reads

I 5
N

p
log2~p!1

p2N

p
log2S p

p2ND . ~9!

In Fig. 2 we show the dependence ofI on the number of
cells, for several values ofp. It can be readily seen that fo
N!p

I'
N

p

11 ln p

ln 2
1O~N/p!2. ~10!

In the limit of largep Eq. ~10! coincides with the intuitive
approximation

I ~N!5NI~1!5NF1

p
log2 p1

p21

p
log2S p

p21D G . ~11!

A linear rise inI (N) means that different neurons provid
different information, or, in other words, that there is n
redundancy in the responses of the different cells. As see
Fig. 2, this is, in fact, the case whenN is small andp is large
enough. When a cell does not respond, it is still provid
some information, namely, that it is not recognizing its sp
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cific stimulus. When two cells are considered, a part of t
non-specific information overlaps with the information co
veyed by the second cell, when responding. In other wo
if two cells respond to different stimuli then, when one
them is in state 1, the other is, for sure, in state 0. Theref
strictly speaking, the information provided by different ne
rons in a grandmother-like encoding is not independe
However, in the limit ofN/p→0 the number of stimuli not
evoking responses in any single cell is large enough a
make the information approximately additive.

As N approachesp, such an independence no long
holds, so the growth ofI (N) decelerates, and the curve a
proaches log2 p. For N5p21, the mutual information is ex-
actly equal to log2 p, and remains constant when more un
are added. In fact,p21 noiseless units are enough to acc
rately identifyp stimuli. If all p21 are silent, then the stimu
lus shown is the one represented by the missing unit.

In a slightly more sophisticated approach, each unit c
have any number of responsesf. But as long as the condi
tional probabilityP(r j us) is the same for all thoses that are
not s( j ), Eq. ~9! still holds.

It should be kept in mind that up to now we have cons
ered the optimal situation, in that different units always
spond to different stimuli. If several cells respond to t
same stimulus, a probabilistic approach is needed since
erwise, the growth ofI (N) depends on the order in which th
units are taken. Averaging over all possible selections oN
cells from a pool ofM units ~the whole set is such that ther
areM /p cells allocated to each stimulus! the result shown in
Fig. 3 is obtained. We have takenp532, and different
curves correspond to various values ofM. The probabilistic
approach smooths the sharp behavior observed in Fig
Actually, the asymptote log2 p can only be reached whe
there is certainty that there arep21 units responding to
different stimuli, that is, forN511(p22)M /p. However, it
is readily seen that withM /p as large as 5, the curves a
already very near to the limit case ofM /p→`.

FIG. 2. Mutual informationI as a function of the number o
cells N, for different sizes of the set of stimuli, in the case
localized encoding. For smallN, the information rises linearly with
a slope proportional to 1/p. WhenN5p21, I saturates at log2 p.
0-3
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B. Distributed coding schemes

As an alternative to the local coding scheme descri
above, we now treat the case of distributed encoding, ran
from sparsely to fully distributed. However, in doing so, w
employ a different approach, namely, we average the in
mation upon the details of the representation.

Equation~8! implies that the amount of information tha
can be extracted from the responses depends on the sp
representations of thep stimuli. Since it is desirable to hav
a somewhat more general result, we define an averaged
tual information^I &:

^I &5 (
r1, . . . ,rp

P0~r1, . . . ,r p!I , ~12!

where the mean is taken over a probability distributi
P0(r1, . . . ,r p) of having the representation in position
r1, . . . ,r p. This distribution, of course, is determined by th
coding scheme used by the system. By averaging the in
mation we depart from the experimental situation, where
recorded responses strongly depend on the very specifi
of stimuli chosen. But, in return, the resulting informatio
characterizes, more generally, the way neurons encode a
tain type of stimuli, rather than the exact stimuli that ha
actually been employed.

We write P0 as a product of single distributions for eac
representation,

P0~r1, . . . ,r p!5)
s51

p

P1~r s!. ~13!

This implies that the representation of one item does not
the probability distribution of the representation of any oth
In this sense, we can say that Eq.~13! assumes that repre
sentations are independent from one another.

FIG. 3. Mutual informationI as a function of the number o
recorded unitsN, once averaged over all the possible selections oN
cells picked up from a pool ofM ~the latter constituted ofM /p units
responding to each stimulus!. Different curves correspond to var
ous values ofM, andp532.
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If in one particular experiment the set of stimuli is larg
enough to effectively sampleP1(r s) the averaged informa
tion will be close to the experimental result.

We further assume that there is a probability distributi
r(r j ) that determines the frequency at which unitj goes into
state r j ~or fires at rater j ). If r is strongly peaked at a
particular state—which can always be taken as zero—
code is said to be sparse. On the contrary, a flatr gives rise
to a fully distributed coding scheme.

Finally, we assume that different units are independent
other words, we factorize the probability that a given stim
lus is represented by the stater as

P1~r !5)
j 51

N

r~r j !. ~14!

In order to average the information~8! we need to derive
the probability that stimuli are clustered into any possible
of $Sr%. Such a probability reads

P~$S%!5S p

$S%
DP r@P1~r !#Sr, ~15!

where

S p

$S%
D 5

p!

P rSr!
. ~16!

Therefore, the average mutual information may be written

^I &5(
$S%

P~$S%!I . ~17!

The summation runs over all sets$S% such that( rSr5p.
Replacing Eq.~8! in Eq. ~17!, we obtain

^I &5(
$S%

S p

$S%
DP r@P1~r !#Sr(

r8

Sr8
p

log2S p

Sr8
D . ~18!

Rearranging the summation so as to explicitly separate o
singleSr j

one may write

^I &5(
r

(
Sr51

p
p!

Sr!
@P~Sr !#

Sr
Sr

p
log2S p

Sr
D 1

~p2Sr !!
A,

~19!

whereA is the sum over all otherS, namely

A5 (
$Sr8Þr%

S p2Sr

$Sr8Þr%
D )

r9Þr

@P1~r 9!#Sr95@12P1~r !#p2Sr.

~20!

Thus,

^I &5(
r

(
Sr51

p21
~p21!!

~Sr21!! @~p21!2~Sr21!#!
log2S p

Sr
D

3@P1~r !#Sr@12P1~r !#p2Sr. ~21!
0-4
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We now discuss two particular cases of Eq.~21!. First, we
take the encoding to be fully distributed, namelyr(r j )
51/ f . Therefore,P1(r j )51/ f N. If this is replaced in the
previous expression, we obtain

^I &dis5~12 f 2N!p21(
S50

p22
~p21!!

S! ~p212S!!

3~ f N21!2S log2S p

S11D . ~22!

It may be seen that the dependence of the informationf
andN always involves the combinationf N. This means that
neither the number of units, nor how many distinctive firi
rates each unit has are relevant in themselves. Only the
number of states matters.

In Fig. 4 we plot the relation between̂I &dis and N for
several values ofp. Initially the information rises linearly
with a slope only slightly dependent onp. As N increases,
^I &dis eventually saturates at log2 p. The limit cases are easil
derived:

lim
N ln f→0

^I &dis5N~p21!ln f log2S p

p21D , ~23!

lim
f N/p→`

^I &dis5 log2 p2~p21! f 2N. ~24!

If the number of stimuli is large, Eq.~23! becomes

lim
N ln f→0

lim
p→`

^I &dis5N
p21

p
log2 f . ~25!

Notice that in contrast to the local coding scheme Eq.~9!, the
initial slope of I (N) hardly depends onp ~actually, it in-
creases slightly withp). This makes the distributed encodin
a highly efficient way to read out information about a lar
set of stimuli by the activity of just a few units.

FIG. 4. Mean mutual information̂I &dis as a function of the
number of neuronsN for several values ofp. Initially the informa-
tion rises linearly with a slope only slightly depending onp. As N
increases,̂ I &dis eventually saturates at log2 p.
01191
tal

As opposed to the fully distributed case, a sparse dist
uted encoding is now considered, withf 52, r(1)
5q, r(0)512q and q!1. This choice is again a binar
case, but with one response much more probable than
other. As a consequence, the most likely representationsR
space are those with either zero or at most one active neu
In fact, P1(r s50)5(12q)N, whereas if the representation
a one-active-unit statee, P1(e)5q(12q)N21. The prob-
ability of all other representations is higher order inq.

Accordingly, to first order inq, we only consider the com
binations ofp representations with at leastp21 of them in
stater s50. These are the only responses with a probabi
P0 at most linear inq. More precisely, the probability o
representing allp stimuli with the same stater50 is
P0(0,0, . . . ,0)5@P1(0)#p'12Npq. In the same way, the
probability of havingN21 stimuli in 0 and a single one-
active-unit state isq. There areN different possible one-
active-unit states, and any one of thep stimuli can be such a
state. Taking all this into account, we find that up to the fi
order inNpq,

^I &spa5NpqFp21

p
log2S p

p21D1
1

p
log2 pG . ~26!

Expanding this expression for largep, we obtain

lim
p→`

^I &5Nq
11 ln p

ln 2
. ~27!

This means that from the experimental measurement of
slope of^I (N)& it is possible to extract the sparseness of
equivalent binary model, which can be compared with a
rect measurement of the sparseness. If the number of sti
cannot be considered large, the whole of Eq.~26! can be
used to derive a value forq.

It should be noticed that ifq51/p Eq. ~26! coincides with
the expression~11! for a grandmother-like encoding. Thi
makes sense, sinceq51/p implies that, on average, any on
unit is activated by a single pattern. In short, it correspon
to a probabilistic description of the localized encoding. N
tice, though, thatq51/p is outside the range of validity o
our limit Npq!1.

III. CONTINUOUS, NOISY NEURONS

In this section we turn to a more realistic description
the single neuron responses. Specifically, we allow the st
r j to take any real value. Therefore, the response spaceR is
now ReN. In addition, we depart from the deterministic rel
tionship between stimuli and responses. This means
upon presentation of stimuluss, there is no longer a unique
response. Instead, the response vectorr is most likely cen-
tered at a particularr s, and shows some dispersion to near
vectors. The aim is to calculate the mutual information b
tween the responses and the stimuli requiring as little as p
sible from the conditional probabilityP(r us). A single pa-
rameters is introduced as a measure of the noise in
representation. Thus,
0-5
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P~r us!5)
j 51

N
e2(r j 2r j

s)2/2s2

A2ps2
, ~28!

where the indexs takes values from 1 top. The conditional
probability depends on the distance between the actua
sponser and a fixed vectorr sPR, which is the mean re-
sponse of the system to stimuluss. There is one suchr s for
every element inS. The choice of Gaussian functions is on
to keep the description simple and analytically tractable.
factorizingP(r us) in a product of one component probabi
ties an explicit assumption about the independence of
neurons is being made.

Figure 5 shows a numerical evaluation of the informat
~1!, when the probabilityP(r us) is as in Eq.~28!. The infor-
mation, just as in the previous section, has been avera
upon many selections of the representationsr s. The curve is
a function of the number of neurons consideredN. Different
lines correspond to different sizes of the set of stimuli, wh
in ~a! s5l/2, and in ~b! s5l, where l is a parameter
quantifying the mean discriminability among patterns, to
defined precisely later. Just as in the discrete distributed c
we observe an initial linear rise and a saturation at log2 p.

FIG. 5. Results of the numerical evaluation of the mutual inf
mation for continuous noisy neurons, wherep is the number of
stimuli in the set. In~a! s5l/2, and in~b! s5l.
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Moreover, and pretty much as in the experimental situat
of Fig. 1, the initial slope does not seem to depend stron
on the number of stimuli, at least for large values of the no
s. In what follows, an analytical study of these numeric
results is carried out. In particular, the relevant parame
determining the shape ofI (N) are identified.

We write the mutual information as

I 5H12H2 , ~29!

where

H152
1

p (
s51

p E dr P~r us!log2F1

p (
s851

p

P~r us8!G
52E dr P~r !log2@P~r !#, ~30!

is the total entropy of the responses, and

H252
1

p (
s51

p E dr P~r us!log2@P~r us!# ~31!

is the conditional entropy ofP(r us), averaged overs.
H2 can be easily calculated. It reads

H25
N

2 ln2
@11 ln~2ps2!#. ~32!

It is therefore linear inN. This stems from the independenc
of the units, since the entropy of the response space incre
linearly with its dimension. It does not depend on the loc
tion of the representationsr s, and it is a growing function of
the noises.

In Appendix A we solve the integral inr of H1 using the
replica method. We obtain

H15
21

ln 2
lim
n→0

1

n S H 1

pn11~2ps2!Nn/2~n11!N/2 (
$K}

S n11

$K%
D

3)
j 51

N

expF 21

4s2~n11!
(

l 51

p

(
m51

p

K l Km

3~r j
l 2r j

m!2G J 21D , ~33!

where$K% now stands for the set$K1 ,K2 , . . . ,Kp% specify-
ing how many replicas are representing each pattern.
summation in$K% runs over all sets ofK such that(s51

p Ks

5n11. The symbol in brackets is defined in Eq.~16!. Equa-
tion ~33! shows that the information depends explicitly o
the ratio between all the possible differencesur l 2rmu and
the noises. In other words, the capacity to determine whi
stimulus is being shown is given by a signal-to-noise ra
characterizing the discriminability of the responses.

The mutual informationI characterizes the selectivity o
the correspondence between stimuli and responses. If the
tance between any two vectorsur l 2rmu is much greater than

-
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the noises, then the mapping is~almost! injective. Thus, in
this limit the mutual information approaches its maxim
value, log2 p.

If, on the other hand, the noise level inP(r us) is enough
to allow for some vectorsr to be evoked with appreciabl
probability by more than one stimulus, the mutual inform
tion decreases. In this sense,I can be interpreted as a com
parison between the noise inP(r us) and the distance be
tween any two mean responses. For a specific choice o
representations, the distance between any two of them
non-linear function of their components. Therefore, in ge
eral, even though Eq.~28! implies that different units are
independent, it is not possible to writeI as a sum over units
of single-units information.

Just as before, we now average the mutual information~1!
over a probability distributionP0(r1, . . . ,r p) of the repre-
sentationsr1, . . . ,r p, namely

^I &5E )
j 51

p

dr j P0~r1, . . . ,r p!I . ~34!

Under the assumption that the responses to different stim
are independent,P0 reads

P0~r1, . . . ,r p!5)
s51

p

P1~r s!. ~35!

Adding the requirement of independent units,

P1~r s!5)
j 51

N

r~r j
s!. ~36!

By replacing the average~12! in the separation~29! we write

^I &5^H1&2H2 , ~37!

sinceH2 does not depend on the vectorsr s.
So we now turn to the calculation of^H1&, namely,

^H1&52
1

ln 2
lim
n→0

1

n F 1

~n11!N/2~2ps2!Nn/2pn11

3 (
$K%

S n11

$K%
D ^A$K%&

N21G , ~38!

where

^A$K%&5E )
s51

p

drsr~r s!

3expF2
1

4~n11!s2 (
m51

p

(
l 51

p

KmK l ~r m2r l !2G .

~39!

The main step forward introduced by the average in Eq.~12!
is that now,^H1& is symmetric under the exchange of a
two responses, or any two neurons. In contrast, before
01191
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averaging process, the location of every single response
every single unit was relevant.

The limit in Eq. ~38! can be calculated in some particul
cases. In the first place, we analyze the largeN limit. From
Eq. ~39! it is clear that^A$K%&<1. The equality holds, in
fact, only when there is a singleK different from zero. In the
calculation of̂ H1&, as stated in Eq.~38!, A$K% appears to the
N-th power. Therefore, whenN→` only the terms with
A$K%51 give a non-vanishing contribution. There arep of
such terms. When the sum in~38! is replaced byp, it may be
shown that once more,^I &5 log2 p.

In the following two subsections we compute^I (N)& for
both large and small values of the noises.

A. Information in the large noise limit

We now make the assumption that the noises is much
larger than some average width ofr(r ). In other words, we
suppose s2@(r l 2r m)2, for all r l and r m with non-
vanishing probability. In this case, the exponential in E
~39! may be expanded in Taylor series. Up to the seco
order,

expF2
1

4~n11!s2 (
m51

p

(
l 51

p

KmK l ~r m2r l !2G
'12

1

4~n11!s2 (
m51

p

(
l 51

p

KmK l ~r m2r l !2

1
1

2 F 1

4~n11!s2 (
m51

p

(
l 51

p

KmK l ~r m2r l !2G 2

.

~40!

If only the constant term is considered, the integral in E
~39! becomes the normalization condition forP0. Thus, the
sums in Eq.~38! give pn11, and it is readily seen that^H1&
exactly cancelsH2. As expected, in the limits2→` the
mutual information vanishes.

The next order of approximation is to consider the exp
sion ~40! up to the linear term. Thus, the integral in Eq.~39!
becomes

^A$K%&512
l2

4~n11!s2 (
m51

p

(
l 51, l Þm

p

Km K l , ~41!

where

l25E dr1 dr2 r~r 1!r~r 2!~r 12r 2!2 ~42!

is the parameter quantifying the discriminability among p
terns, and appearing in Fig. 5. We have now gained a m
precise insight of the larges limit. It stands for takings
@l.

Since in Eq.~38! A$K% appears to theN-th power, in order
to proceed further we have to estimate the size ofNl2/s2.
We first consider the smallN limit and assume, to start with
that Nl2/s2!1. Thus, we may expand
0-7
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~A$K%!
N'12

Nl2

4~n11!s2 (
m51

p

(
l 51, l Þm

p

Km K l . ~43!

In Appendix B we calculate the sums in Eq.~43!, thus ob-
taining ^H1&. When the result is replaced in Eq.~38! we get

^I &5
N

ln 2

~p21!

p S l

2s D 2

. ~44!

For a large amount of noise, the information rises linea
with the number of neurons. This dependence should
compared with Eq.~25!, in the discrete distributed case. Th
two expressions coincide, if the number of discrete statesf is
associated to exp(l2/4s2). Therefore, as regards to the m
tual information, a dispersions in the representation is
equivalent to having a number exp(l2/4s2) of distinguish-
able discrete responses. Notice that both the noisy, con
ous and the discrete, deterministic approach show the s
dependence on the number of patterns.

Regarding the dependence ons, it is readily seen that as
the noise decreases, the slope ofI increases. In other words
every single neuron provides a larger amount of informati
Since the mutual information saturates at log2 p for N→`, a
small value ofs implies that the ceiling is quickly reached
As a consequence, the assumptionN!s2/l2 can now be
more precisely stated asN!(s2/l2)log2 p. In this regime,
linearity holds.

As N increases, saturation effects become evident, and
mutual information is no longer linear. The first hint of th
presence of an asymptote at log2 p is given by the quadratic
contribution to I (N). In order to describe it, the whole o
expansion~40! must be replaced in Eq.~39!. Carrying out
the integral inr 1, . . . ,r p,

^A$K%&512
l2

4s2~n11!
(

l 51

p

(
m51, mÞl

p

K l Km

1
h4

32s4~n11!2
, ~45!

where

h45E F (
l 51

p

(
m51

p

~r l 2r m!2K l KmG2

)
s51

p

r~r s!drs.

~46!

Extracting the sums from the integral, the limit in Eq.~38!
can be solved, and

^I &5
N

ln 2

p21

p F l2

4s2
1

1

2~4s2!2
CG2

N2

ln 2 S l2

4s2D 2
p21

p2
.

~47!

Here,
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2l4

p
22L1S 12

2

p
1

2

p2D 24L2

~p22!

p S 2

p
21D

22L3

~p22!~p23!

p2
~48!

with

L15E dr1 dr2 r~r 1!r~r 2!~r 12r 2!4,

L25E dr1 dr2 dr3 r~r 1!r~r 2!r~r 3!~r 12r 2!2~r 12r 3!2,

~49!

L35E dr1 dr2 dr3 dr4 r~r 1!r~r 2!r~r 3!r~r 4!~r 12r 2!2

3~r 32r 4!2.

Our numerical simulations corroborate that if a quadra
function is fit to the initial rise ofI (N), the coefficients ac-
companyingN andN2 depend onp ands just as predicted
by Eq. ~47!.

B. The limit of vanishing noise

In the first place, we takes→0. If the conditional prob-
ability ~28! is replaced by ad-function, it is readily seen tha
I 5 log2 p.

In Appendix C we show that for small—but no
vanishing—values of the noises, the mutual information is
expected to grow as

^I &5 log2~p!F12
p21

log2 p
~4ApsB2!NG , ~50!

where

B25E r2~r !dr. ~51!

In order to corroborate this result, we have fit a functi
of the form log2(p)@12a exp(bN)# to the numerical evalua
tion of Eq. ~37!. In Fig. 6 we show the dependence ofa and
b with s and p. We observe that coefficienta shows a de-
pendence with the noises, in contrast to what is predicted
by Eq. ~50!. It is also in contrast to the prediction of th
phenomenological model leading to Eq.~3!, wherea51. In
addition,b shows a variation with the number of stimulip.
Thus, although it is very easy to calculate the mutual inf
mation whens is exactly equal to 0, we have not been ab
to derive analytically the approach to the log2 p limit, as s
→0.

IV. A RELATED INFORMATIONAL MEASURE
OF ACCURACY

Up until now, we have considered the mutual informati
of Eq. ~1!, a quantifier of the capacity with which a give
0-8
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REPRESENTATIONAL CAPACITY OF A SET OF . . . PHYSICAL REVIEW E63 011910
group of units can represent a fixed set ofp stimuli. This is a
measure of direct relevance to neuronal recording exp
ments. A somewhat different information measure has b
used in analyzing mathematical network models, in parti
lar models of memory storage and retrieval. We would l
to clarify the relationship between the two measures.

Consider the variability with which a typical stimulus
represented, which in a mathematical model might be
scribed by a formula as simple as Eq.~28!. There,r is the
response during a trial, whiler s is the average respons
across trials with the same stimulus. The average variab
may be quantified by the mutual information betweenr and
r s,

Ĩ 5E dr sP~r s!E drP~r ur s!log2FP~r ur s!

P~r ! G , ~52!

where r s is taken to span the space of average respon
described by the probability distributionP(r s). In a different
model, r s might be the first response produced, andr the
second, or any successive response; in yet other models@18–
22#, r s might be the stored representation of a memory ite
and r the representation emerging when the item is be
retrieved. In all such cases, one need not refer to a disc

FIG. 6. Dependence of the coefficientsa andb extracted from
numerical evaluations of the mutual information, with the para
etersp ands.
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set ofp stimuli, but only to a probability distributionP(r s)
@and, of course, to a conditional probability distributio
P(r ur s)#. This measure of accuracy is simply related to t
mutual information we have considered in this paper: it
given by itsp→` limit. In particular, the initial linear rise of
Ĩ with N is the only regime relevant to the accuracy measu
which for independent units is always purely linear inN.

Let us see this in formulas. Just as before, we assume
P(r s) factorizes as

P~r s!5)
j 51

N

P~r j
s!. ~53!

The equivalent of Eq.~2! is now

P~r !5E dr sP~r s!P~r ur s!. ~54!

In Appendix D we show that

Ĩ 5
N

ln 2

l2

4s2
. ~55!

In the derivation of Eq.~55! no assumption of smallN has
been made. By comparison with Eq.~44! we see that, indeed
the information measure~52! introduced in this section co
incides with the initial rise of the information about whic
stimulus is being shown~Sec. III!, when the latter is calcu-
lated for a large number of stimuli.

V. SUMMARY AND DISCUSSION

The capacity with which a system ofN independent units
can code for a set ofp stimuli has been studied. More pre
cisely, the growth of the mutual informationI between
stimuli and responses has been calculated, for different m
els of the neural responses. In all these models, the u
were supposed to operate independently. That is to say
conditional probability of responser given stimuluss is al-
ways a product of single-unit conditional probabilities. O
course, the fact that neurons operate independently does
mean that they provide independent information. As state
Eq. ~29!, the mutual information can always be separa
into the difference between the entropy of the respon
(H1) and the averaged stimulus specific entropy (H2), some-
times called noise entropy. For independent units,H2 is al-
ways linear inN. However, the factorization of the cond
tional probabilities does not imply the factorization ofP(r ),
meaning thatH1 need not be linear in the number of units.
other words, even independent units may produce correl
responses, and indeed strongly correlated, simply bec
every unit is driven by the same set of stimuli. Imagine th
each unit provides a very precise representation of
stimuli. If stimulus 1 is shown, the responses of theN units
will show almost no trial to trial variability. When the stimu
lus is changed, another set ofN responses is obtained. Bu
the first responses always come together~driven by stimulus
1!, and so do the second ones. Even after averaging ove
stimuli, this coherent behavior implies strong correlatio

-

0-9
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INÉS SAMENGO AND ALESSANDRO TREVES PHYSICAL REVIEW E63 011910
between the responses. In this example,H2'0 and H1

' log2 p.
In other situations, when the number of stimuli is ve

large, or the representation of each one of them is noisier
correlations in the responses are weaker. We have seen
in these cases,H1 tends to become linear inN.

Throughout the work, the responses of the units was
scribed by a vectorr . Nothing was said, however, about wh
the components of the vector really are. In the experimen
Fig. 1, r j was the firing rate of neuronj in a pre-defined time
window. One might however consider a slightly more co
plex description in which a subset ofM components is asso
ciated to the response of unitj, for example, the firstM
principal components of its time course@1#. Our analysis
would still apply, replacingN units byMN components.

In the Introduction, reference was made to the pheno
enological models where the growth ofI (N) as given by Eq.
~3! is entirely explained by ceiling effects. In such mode
the information provided by different neurons is supposed
be independent, inasmuch this is compatible with the f
that the total amount of information must be log2 p. The
models presented in this paper are not in principle oppo
to the phenomenological ones; rather they are at a more
tailed level of description. Instead of a direct assumption
how different units share the available information, w
specify conditional probabilities for the responses. As a
sult, we find global trends that closely resemble those of
~3!, that is to say, an initial linear rise and an exponen
saturation at log2 p. The detailed shape ofI (N) is, however,
different for each model.

It should be kept in mind that whatever the detailed sh
of the curve, the approach to log2 p is no more than a con
sequence of the fact that the number of stimuli is limite
The maximum information that can be extracted from
neural responses is log2 p. It is clear that if we have a set o
neurons that already provides information very near to
maximum, by adding one more neuron we will gain no mo
than redundant information. In other words, we have reac
a regime where the neural responses correctly distinguish
identity of each stimulus. But we cannot deduce from t
that the representational capacity of the responses rem
unchanged when the number of neurons increases.
should rather realize that the task itself is no longer app
priate to test the way additional neurons contribute in
encoding of stimuli. In contrast, the slope of the initial line
rise is an accurate quantification of the capacity of the sys
to represent items.

We have found that distributed coding schemes resul
an initial slope that is roughly independent of the number
stimuli. This means that the number of units needed to re
a given fraction of the maximum information scales
log2 p—at least, for largep. In contrast, when a grandmothe
cell encoding is used, the initial slope is proportional to 1p,
and hence, one should haveN}p. This makes distributed
encoding much more efficient than localized schemes. In
example of the experiment of Fig. 1, the information me
sure supports the conclusion, already evident from the
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sponses themselves, that the representation of faces in
inferior temporal cortex of the macaque is distributed.
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APPENDIX A: CALCULATION OF H 1 USING THE
REPLICA METHOD

Replacing the identity

ln a5 lim
n→0

1

n
~an21! ~A1!

in Eq. ~30! the integral inr can be evaluated. This we sho
in the present appendix.

H152(
s51

p
1

pE dr P~r us!
1

ln 2
lim
n→0

1

n H F (
s851

p
1

p
P~r us8!G n

21J
5

21

ln 2
lim
n→0

1

n S H1a

pn11
21D , ~A2!

where

H1a5(
s51

p E dr P~r us!

3F (
s851

p

P~r us8!G n

(
s151

p

••• (
sn1151

p

)
k51

N

H1b~ j !,

~A3!

and

H1b~ j !5
1

~2ps2!(n11)/2E dr j expF2
1

2s2 (
k51

n11

~r j2r j
sk!2G
~A4!

is a factor that depends on thej -th component of one par
ticular way of distributingp stimuli among then11 replicas.
To calculate it we observe that

(
k51

n11

~r j2r j
sk!25~n11!F r j2

1

n11 (
l 51

n11

r j
sl G2

1jW j
†AjW j ,

~A5!

wherejW j is a vector ofn11 components such thatj j
k5r j

sk .
The vector notation is used for arrays ofn11 components.
The matrixA has dimensions (n11)3(n11), and reads

A5I d2
1

n11
U, ~A6!

where U is an (n11)3(n11) matrix, with all its coeffi-
cients equal to unity.
0-10
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Thus, the quadratic factor in Eq.~A5! can be extracted
outside the integral in Eq.~A4!, and

H1b~ j !5~2ps2!2(n11)/2A2ps2

n11
expS 21

2s2
jW j

†AjW j D .

~A7!

Replacing this expression in Eq.~A3!

H1a5@An11~2ps2!n/2#2N

3 (
s151

p

••• (
sn1151

p

expS 21

2s2 (
j 51

N

jW j
†AjW j D . ~A8!

We now re-arrange the summation in Eq.~A8!, according
to the numberd of different stimuli appearing in then11
replicas. For each realization ofs1 ,s2 , . . . ,sn11, the replicas
can be divided ind classes, such that all the replicas belon
ing to the same class are associated to the same stimulus
replicas of different classes correspond to different stim
The number of replicas adscribed to stimulusj is K j .
Clearly, the sum of all theK j is n11, and onlyd of the Ki
are different from zero. Therefore,

(
s151

p

(
s251

p

••• (
sn1151

p

5(
$K%

S n11

$K%
D . ~A9!

where the term in brackets is defined in Eq.~16!, and the
(n11)-fold summation involves all possible sets
K1 , . . . ,Kp ranging from 0 ton11, and whose total sum i
n11.

The advantage of this rearrangement is that the expo
in Eq. ~A8! can be written as a function of only the diffe
ences between representations, namely

jW j
†AjW j5

1

2~n11! (
m51

p

(
l 51

p

KmK l ~r j
m2r j

l !2. ~A10!

Therefore, replacing Eqs.~A9! and ~A10! in Eq. ~A3! we
arrive at Eq.~33!.

APPENDIX B: INITIAL RISE OF ŠI „N…‹ IN THE LARGE
NOISE LIMIT

Replacing Eqs.~40! in ~38!, we get

^H1&52
1

ln 2
lim
n→0

1

n H 1

~n11!M /2~2ps2!Nn/2pn11

3F pn112
l2N

4~n11!s2
SG21J , ~B1!

with

S5(
$K%

S n11

$K%
D (

m51

p

(
l 51, l Þm

p

KmK l . ~B2!
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In order to computeS we interchange the order of summ
tion

S5 (
m51

p

(
l 51, l Þm

p

(
$K%

S n11

$K%
DKmK l . ~B3!

The terms withK l or Km equal to zero do not contribute t
S. Therefore, we can restrict the sum in Eq.~B3! to KmÞ0
ÞK l . Thus, the addition over allK ’s ranging from 0 ton
11 whose total sum isn11 can be replaced by anothe
addition, where allK ’s different fromK l andKm range from
0 to n21, Km andK l go from 1 ton, and the sum of all the
K ’s is n11. Since there arep(p21) choices forK l and
Km ,

S5p~p21!~n11!npn21. ~B4!

Replacing Eq.~B4! in Eq. ~B1! we get

^H1&5
1

ln 2 FN

2
1

N

2
ln~2ps2!G1

N

ln 2

p21

p S l

2s D 2

.

~B5!

WhenH2 is summed tô H1&, Eq. ~44! is obtained.

APPENDIX C: THE SMALL s LIMIT

We go back to Eq.~38!. We re-write Eq.~39! as

^A$K%&5E )
s51

p

drsr~r s!expF2
1

2~n11!s2
x̄†M x̄G ,

~C1!

wherex̄ is a vector ofp components, such thatxs5r s, and

M5~n11!S K1 0 . . . 0

0 K2 . . . 0

. . .

0 0 . . . Kp

D
2S K1K1 K1K2 . . . K1Kp

K2K1 K2K2 . . . K2Kp

. . .

KpK1 KpK2 . . . KpKp

D . ~C2!

The integrand in Eq.~C1! is 1 in the origin, and also along
the eigenvectors ofM corresponding to a zero eigenvalu
The number of such eigenvalues is equal or larger than
number ofK that are zero. We therefore re-arrange the nu
bering of the patterns in such a way as to put all those w
K different from zero in the firstd places. Thus,Kd11
5Kd125•••5Kp50. With this ordering, matrixM is filled
with zeros in all those positions with a row or a colum
greater thand. Integrating inr d11,r d12, . . . ,r p we get
0-11
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^A$K%&5E )
s51

d

drsr~r s!expF2
1

2~n11!s2
x̄8†M 8x̄8G ,

~C3!

wherex̄8 andM 8 are defined asx̄ andM, but live in a space
of d dimensions~and notp).

In order to integrate Eq.~C3! we observe thatM 8 has a
single eigenvaluel1 equal to zero, with eigenvector

w15
1

Ad S 1

1

. . .

1

D . ~C4!

We callw2 , . . . ,wd all the other eigenvectors correspondi
to non-vanishing eigenvaluesl2 , . . . ,ld . We choose the
eigenvectors normalized, and orthogonal to each other an
w1 ~the symmetry ofM allows us to do so!. With this set of
vectors we construct a new basis, and callw̄ the collection of
coordinates in this new system. We define a matrixC as the
change of basis

x̄5Cw̄, ~C5!

where

C5S 1/Ad c12 . . . c1d

1/Ad c22 . . . c2d

. . .

1/Ad cd2 . . . cdd

D ~C6!

and det(C)51. In this new basis,

^A$K%&5E )
j 51

d

dwjr~w1 /Ad1cj 2w21•••1cjdwd!

3expF2
1

2 (
l 51

d
l l

s2~n11!
wl

2 G . ~C7!

Multiplying and dividing by the product of all 2p(n
11)s2/l l , for l P@2,d#, we get

^A$K%&5S )
j 52

d A2ps2~n11!

l j
D E )

j 51

d

@dwjr~w1 /Ad

1cj 2w21•••1cjdwd!#

3

expF2
1

2 (
k51

d
lk

s2~n11!
wk

2G
)
j 52

d A2ps2~n11!

l j

. ~C8!

In the limit s→0, the integrand in Eq.~C8! includesd21
delta functions. Once integrated,
01191
to

lim
s→0

^A$K%&5)
j 52

d A2ps2~n11!

l j
E dw1@r~w1 /Ad!#d.

~C9!

It may be shown that

)
j 52

d

l j5d~n11!d22 )
l 51

d

K l . ~C10!

Thus,

lim
s→0

^A$K%&5~2ps2!(d21)/2
~n11!1/2

Ad )
l 51

d

K l

Bd , ~C11!

where

Bd5E dx@r~x!#d. ~C12!

We now turn to the calculation of

S5(
$K%

S n11

$K%
D ^A$K%&

N, ~C13!

where, as before, the summation runs over all sets of$K% that
add up ton11. Equation~C11! states that̂ A$K%& depends
on d, that is, on the number ofK that are different from zero
Therefore, we write the sum in Eq.~C13! as

S5 (
d51

n11
1

d!

p!

~p2d!!
@~2ps2!(d21)/2An11Bd#NS1 ,

~C14!

where

S15 (
$K%8

S n11

$K%
D F 1

)
j 51

d

K j
G N/2

. ~C15!

The sum inS1 involves only thed values of K that are
different from zero. We now make the approximation

S1'S d

n11D Nd/2

(
$K%8

S n11

$K%
D . ~C16!

But

(
$K%8

S n11

$K%
D 5(

j 50

d

~21! j
d!

d! ~d2 j !!
~d2 j !n11.

~C17!

And, taking the limit

lim
n→0

(
$K%8

S n11

$K%
D 5dd,11n(

j 50

d
d!

~d2 j !! j !
j ln j ~21!d2 j .

~C18!
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Moreover, if N is large, asd grows (Bd)N→0. Therefore,
keeping justd51 andd52 we may approximate

S'p1p~p21!ln 2~2ps2!N/2~n11!N/2~B2!Nn.
~C19!

Replacing in Eqs.~38! and ~29! we arrive at Eq.~50!.

APPENDIX D: INFORMATION BETWEEN THE ACTUAL
RESPONSE AND THE STORED REPRESENTATION

The aim is to calculate Eq.~52! under the assumption
~28!. Replacing Eq.~28! in Eq. ~54! the probabilityP(r ) can
be written as

P~r !5)
j 51

N

z~r j !, ~D1!

where

z~r j !5E dr j
0P~r j

0!
e2(r j 2r j

0)2/2s2

A2ps2
. ~D2!

Just as before, we separate

Ĩ 5H12H2 , ~D3!

where

H252E dr0E dr P~r ur0!P~r0!log2@P~r ur0!#

5
N

2 ln 2
@11 ln~2ps2!#,

H152E dr0E dr P~r ur0!P~r0!log2@P~r !#

52NE dtz~ t !log2@z~ t !#. ~D4!

Inserting the definition~D2! of z(t), and using the expres
sion ~A1! for the logarithm we get

H152
N

ln 2
lim
n→0

1

nE dt)
j 51

n11
e2(t2xj )

2/2s2

A2ps2

2E dxP~x!E dt
e2(x2t)2/2s2

A2ps2
. ~D5!

The last term in Eq.~D5! is nothing but the integral ofz(x)
over all x, which can be shown to give 1. To carry out th
integral in t in the first line of Eq.~D5! we observe that
01191
)
j 51

n11
e2(t2xj )

2/2s2

A2ps2
5~2ps2!2(n11)/2

3expH 2~n11!

2s2 F t2
1

n11 (
j 51

n11

xj G2

2
1

2s2 F (
j 50

n11

xj
22

1

n11 S (
k51

n11

xj D 2G J .

When replacing this expression in Eq.~D5!, the integration
in t can be done right away. The result is@2ps2/(n
11)#1/2. Therefore,

H152
N

ln 2
lim
n→0

1

n F ~2ps2!2n/2 ~n11!21/2

3E )
l 51

n11

dxl P~xl !

3expH 21

2s2 F (
j 51

n11

xj
22

1

n11 S (
k51

n11

xkD 2G J 21G .

~D6!

In the same way as in Eq.~A10!, we write

(
l 51

n11

xl
2 2

1

n11 S (
j 51

n11

xj D 2

5
1

2~n11! (
l 51

n11

(
m51

n11

~xl 2xm!2.

~D7!

Thus, replacing Eq.~D7! in Eq. ~D6!, and making the expan
sion

expF2
1

4s2~n11!
(

l 51

n11

(
m51

n11

~xl 2xm!2G
'12

1

4s2~n11!
(

l 51

n11

(
m51

n11

~xl 2xm!2, ~D8!

H1 can be calculated. The result is

H15
N

ln 2 H 1
2 @11 ln~2ps2!#1

l2

4s2J . ~D9!

When H2 is substracted, Eq.~55! is obtained. It should be
noticed that Eq.~D8! is not an approximation. Thej -th order
in the Taylor expansion of the exponential grows as@n(n
11)# j . Therefore, only the linear term gives a contributio
for n→0.
0-13



u

ut.

-

u-

oi

ol.

-
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